Search results

Search for "electronic structure" in Full Text gives 216 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • inversion occurs (top inset to Figure 1a), and mounds (valleys) appear bright (dark). A similar contrast inversion was previously reported for different tunneling voltages [42] and associated with the specific electronic structure of graphene on Ir(111) [45]. In the present experiments, the contrast
  • increased tip–graphene hybridization compared to the far tunneling range, which may entail a modification of the graphene electronic structure or enhance the contribution of substrate states to the junction current [46]. The mounds and adjacent valleys of the moiré superstructure are characterized by
  • defects appear as depressions with no identifiable interior structure. Therefore, they may be interpreted as graphene vacancy sites, that is, as sites with missing C atoms. As shown by the spectra of dI/dV for the two defect types (Figure 1d,e) the electronic structure differs. Atop the center of 1
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • effects are significant. The main aim of our study was to analyse the atomic ordering in different planar Au/Ge interfaces, characterize their energetic properties and present the accompanying changes in the electronic structure. To this end, the concepts of interfacial energy and of the work of
  • this heterostructure. Electronic structure Here we discuss electronic properties of the optimized defect-free Au/Ge interface structures investigated in the previous section, that is, the variants C and D of the Au-fcc(011)/Ge(001) interface and the Au-hcp(010)/Ge(111) heterostructure shown in Figure
  • displacements due to significant mismatch. Finally, analyzing the electronic properties, we demonstrate that Au/Ge systems have metallic character, but covalent-like bonding states between interfacial Ge and Au atoms are also present. Keywords: Au/Ge heterostructures; density functional theory; electronic
PDF
Album
Full Research Paper
Published 15 Nov 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • behaviour [86]. The metal ion can have different levels of impact on the emission depending on the electronic structure of the metal and the relative energy of the metal and linker orbitals. To develop luminescent MOFs, a variety of transition metals have also been combined with different ligands. Note that
PDF
Album
Review
Published 01 Jun 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • expected to pave the way for further functional nanostructures. In organic molecules and materials, the electronic structure and physical properties can be modified by replacing carbon with silicon. For example, silicon-substituted graphene-based materials exhibit exotic properties. However, it is
  • -workers used 1,4,5,8-tetrabromonaphthalene as a molecular precursor and sequential dehalogenation reactions under mild conditions to synthesize very thin (five carbon atoms wide) armchair graphene nanoribbons on a Au(111) surface [122]. The spatial distribution of the electronic structure and other
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • , Eonset: 1.34 V). Thus, the presence of both nickel in the oxidation state 3+ and the LDH structure results in a more efficient OER reaction. XAS analysis indicated the change in the electronic structure of the catalysts after the addition of GO (Figure 3). The analysis showed that the electronic
  • structure around nickel and iron was changed, which may be associated with interactions between NiFe or CoNiFe and GO (carbon domains). Something similar was observed in the case of the addition of N-doped nanocarbon to NiFe [16]. To summarize, the disturbed morphology and the change in the electronic
  • structure of CoNiFe after the addition of GO could result in a less attractive OER catalytic activity of this material compared to CoNiFe alone or NiFe-GO. Further OER studies on NiFe-GO showed that, apart from the desirable morphology and structure, each of the materials forming the catalyst has a specific
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • (QDs) of nanometer scale, the CQD edges influence the electronic structure of the conjugated sp2 domains [35][36]. Figure 2 shows FTIR, UV–vis and PL spectra of CQDs/PU composite samples. It is obvious from Figure 2a that there are some additional peaks in the CQDs/PU FTIR spectrum compared to that of
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

From a free electron gas to confined states: A mixed island of PTCDA and copper phthalocyanine on Ag(111)

  • Alfred J. Weymouth,
  • Emily Roche and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2022, 13, 1572–1577, doi:10.3762/bjnano.13.131

Graphical Abstract
  • include a metal–organic interface. At this interface, it is important to be able to modify the band structure to optimize the efficiency of a device [1]. One of the most successful methods to change the electronic structure of a molecular semiconductor device is to add a second molecular species either at
PDF
Album
Supp Info
Letter
Published 22 Dec 2022

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • electronic structure of nanotubes. To gain insights into the correlation between SWCNT diameter and the adsorption of riboflavin, we performed single-step chirality enrichment of SWCNT dispersions with various diameter distributions: CoMoCat SWCNTs with a mean diameter 0.81 nm [24] and Tuball nanotubes with
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • function by utilizing the Tauc plot mentioned in Equation 3. The obtained values were depicted in Figure 5a–e. The enhanced light absorption properties could be attributed to the grey/black colour of MBN and enhanced charge transfer attained due to the change in the electronic structure through the
  • changes in the electronic structure by the formation of C–B and C–N moieties. This also led to the delocalization of electrons and accumulation of additional electrons from the graphitic carbon leading to an increase in charge carrier density within MBN-80. The removal of MB and phenol demonstrated LED
PDF
Album
Full Research Paper
Published 22 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • are just van der Waals forces, which are weak [46]. Metal oxides such as TiO2 only have the O 2p orbital in their VB. In contrast , Bi-based oxide materials have an electronic structure in which O 2p and Bi 6s orbitals are paired in the VB. The bandgap of the semiconductor may be reduced to 3.0 eV
  • better degradation efficiency for, respectively, BPA and ciprofloxacin than pristine Bi3O4Cl. This study offers fresh perspectives on photocatalyst design and underlines the importance of electronic structure modification in catalytic activity adjustment. Self-doping is a novel approach for introducing
PDF
Album
Review
Published 11 Nov 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • CDs, the solubility and QY can be improved. The size of CDs and chemical functionality present on their surface can be discreetly tuned to change the electronic structure for their luminous features. Various molecular precursors have been used earlier for the production of CDs, including ethylene
  • to attract greater attention since it can produce novel electronic structures. The electronic structure of CDs can be modified to produce n-type or p-type carriers by adding atomic impurities, such as nitrogen, boron, sulfur, or phosphorus. The QY of CDs could also be considerably enhanced by
  • the electronic structure of CDs, N,S-CDs have drawn more interest in recent years. Li et al. reported a simple and economical one-pot hydrothermal carbonization route to prepare N,S-CDs by using ginkgo leaves as a natural precursor. XPS results demonstrated that the reported CDs were having elemental
PDF
Album
Review
Published 05 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • , respectively [41]. In recent years, artificial Z-scheme heterojunction catalysts have generated extensive interest since its special electronic structure not only promotes separation of electron–hole pairs but also remains with high redox capacity [42]. Therefore, the photocatalytic activity of MIL101(Fe) can
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • absorption spectrum near the ionization threshold of core electrons with orbital momentum l belonging to the absorbing atom [29]. It is sensitive to the electronic structure of the absorbing atom, since its intensity is nearly proportional to the density of the unoccupied states whose symmetry verifies the
  • enable us to investigate the effect of disorder on the structures and electronic properties of Ni-doped zirconia. X-ray absorption near-edge structure (XANES) offers a deep insight into the electronic structure of materials as we shall show in the following sections. XANES calculation The XANES spectra
  • in S1 and S2 may be responsible for the decrease in the pre-edge peaks with increasing concentration of oxygen vacancies. Conclusion Using the density functional theory approach and X-ray absorption near-edge spectroscopy, we study the electronic structure of zirconia containing two nickel dopant
PDF
Album
Full Research Paper
Published 15 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • layer of 2D material, such as graphene [27][28], hexagonal boron nitride [29][30][31] and MoS2 [32][33]. Moreover, an organic layer inserted between the substrate and the overlayer has been shown to be effective in improving the order of the molecular film [34][35] or restoring its original electronic
  • structure [36][37][38]. In this paper, we investigate the effects induced by a ZnTPP buffer layer covering the Fe(001)–p(1 × 1)O surface on the electronic and structural properties of a C60 ultrathin film. The Fe(001)–p(1 × 1)O surface is characterized by a single layer of oxygen atoms, adsorbed in the
PDF
Album
Full Research Paper
Published 30 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • , enhanced electron transport facility, excellent mechanical, thermal, and electrical stability [11][25][26][27]. The electronic structure and surface physicochemistry of graphene are beneficial for electron transfer. Several graphene-based nanocomposites based on complex synthesis processes are reported as
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • brookite TiO2 changes with the preparing details is still unclear. The varied local structures of brookite can affect its electronic structure and hence its photocatalytic performance. Here, we report that Na-doped brookite NaxTi1−xO2 was synthesized by a hydrothermal reaction of tetrabutyl titanate
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • oxide (not to be confused with stannous oxide with tin in the oxidation state of 2+ [13], also known as cassiterite [14]. SnO2 materials have many interesting properties. For instance, the structure and electronic structure can be manipulated easily due to the highly tunable valence state and oxygen
PDF
Album
Review
Published 21 Jan 2022

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

  • Richard Liam Marchese Robinson,
  • Haralambos Sarimveis,
  • Philip Doganis,
  • Xiaodong Jia,
  • Marianna Kotzabasaki,
  • Christiana Gousiadou,
  • Stacey Lynn Harper and
  • Terry Wilkins

Beilstein J. Nanotechnol. 2021, 12, 1297–1325, doi:10.3762/bjnano.12.97

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • parameter close to the experimental value, we investigated the electronic structure of π-SnSe. The density of states (DOS) plot for the π-SnSe calculated by the meta GGA-mBJ is presented in Figure 3. The upper valence band is majorly contributed by the p states of Se and Sn atoms with a small share of Sn s
  • electronic structure and nature of the dominant charge carriers of an alloy. A high value of the Seebeck coefficient is needed for an excellent TE device. A variation of the Seebeck as a function of temperature is presented in Figure 9a. It can be observed that the Seebeck coefficient value at a lower
PDF
Album
Full Research Paper
Published 05 Oct 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • inertness and the low density of states near the Fermi level. However, the electronic decoupling efficiency also depends on the electronic structure of the 2D material. Sometimes, only molecular states in the bandgap of the 2D material can be decoupled. Moreover, ultrathin organic spacer layers can
PDF
Editorial
Published 23 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • introduces new states in the electronic structure of the metal–adsorbate complex leading to an increase in the Raman scattering cross section of the analyte [17]. Consequently, the CE mechanism should be accompanied by a change of spectral properties of the analyte, which was not observed in this study. Thus
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • analysis of these substrate effects can be found in [18]. Electrical and electronic properties The majority of defect engineering studies using the HIM have focused on tuning electrical conductivity. First work in this area concentrated on graphene, seeking to locally modulate its 2D electronic structure
PDF
Album
Review
Published 02 Jul 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • obtaining a highly efficient HER under visible light conditions [28][29]. One of the most effective methods to modify the electronic structure and improve photocatalytic properties, among so many options, seems to be non-metallic doping [30][31][32][33]. For instance, Ma et al. found that the doping of PCN
PDF
Album
Full Research Paper
Published 19 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • }, {100}, and possibly {110} exposed facets in AgNPs are different not only in the densities of the surface atoms, but also in their electronic structure, bonding, and chemical reactivity [34][35][36]. Figure 2 depicts these surfaces (facets) more clearly. Agnihotri et al. studied the bactericidal
  • complementary way, the size, distribution, shape heterogeneity, morphology, dispersion, and aggregation can be directly evaluated via TEM in which the high spatial resolution facilitates the investigation of the electronic structure and chemical composition [156]. However, the disadvantages other than the
PDF
Album
Supp Info
Review
Published 14 May 2021

Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

  • Zhao Liu,
  • Antoine Hinaut,
  • Stefan Peeters,
  • Sebastian Scherb,
  • Ernst Meyer,
  • Maria Clelia Righi and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2021, 12, 432–439, doi:10.3762/bjnano.12.35

Graphical Abstract
  • electronic charge of the corresponding atom. Therefore, to perform the Bader charge analysis, one needs the whole charge-density grid based on the optimized electronic structure. To calculate the work functions of the KBr layer adsorbed on Ir, we created a symmetric system, in which both the top and the
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021
Other Beilstein-Institut Open Science Activities